

PyRMQ

[image: _images/75626d44d231647592724738c369947fdeae4786.svg]
 [https://github.com/first-digital-finance/pyrmq][image: _images/pyrmq.svg]
 [https://pypi.org/project/PyRMQ/][image: _images/4218d70b005dc0ecd20e4a8f215a261905db14a2.svg]
 [https://pyrmq.readthedocs.io][image: _images/pyrmq1.svg]
 [https://pypi.org/project/PyRMQ/][image: _images/license-MIT-blue.svg]
 [https://altusgerona.mit-license.org][image: _images/code%20style-black-000000.svg]
 [https://github.com/psf/black][image: _images/750d50bd28fdf128e3649d76729adb5ac2d9c236.svg]
 [https://github.com/PyCQA/isort]Python with RabbitMQ—simplified so you won’t have to.

Features

Stop worrying about boilerplating and implementing retry logic on your queues. PyRMQ already
does it for you.

	Use out-of-the-box Consumer and Publisher classes created from pika [https://pypi.org/project/pika/] for your projects and tests.

	Custom DLX-DLK-based retry logic for message consumption.

	Message priorities

	Works with Python 3.

	Production ready

Quickstart

PyRMQ is available at PyPI [https://pypi.org/project/PyRMQ/].

$ pip install pyrmq

Just instantiate the feature you want with their respective settings.
PyRMQ already works out of the box with RabbitMQ’s default initialization settings [https://hub.docker.com/_/rabbitmq)].

from pyrmq import Publisher
publisher = Publisher(
 exchange_name="exchange_name",
 queue_name="queue_name",
 routing_key="routing_key",
)
publisher.publish({"pyrmq": "My first message"})

Publish message with priorities

To enable prioritization of messages, instantiate your queue with the queue
argument x-max-priority. It takes an integer that sets the number of possible
priority values with a higher number commanding more priority. Then, simply
publish your message with the priority argument specified. Any number higher
than the set max priority is floored or considered the same.
Read more about message priorities here [https://www.rabbitmq.com/priority.html]

from pyrmq import Publisher
publisher = Publisher(
 exchange_name="exchange_name",
 queue_name="queue_name",
 routing_key="routing_key",
 queue_args={"x-max-priority": 3}
)
publisher.publish({"pyrmq": "My first message"}, priority=1)

Warning

Adding arguments on an existing queue is not possible. If you wish to add queue arguments,
you will need to either delete the existing queue then recreate the queue with arguments or simply
make a new queue with the arguments.

Consuming

Instantiating a Consumer automatically starts it in its own thread making it
non-blocking by default. When run after the code from before, you should be
able to receive the published data.

from pyrmq import Consumer

def callback(data):
 print(f"Received {data}!")

consumer = Consumer(
 exchange_name="exchange_name",
 queue_name="queue_name",
 routing_key="routing_key",
)

consumer.start()

DLX-DLK Retry Logic

What if you wanted to retry a failure on a consumed message? PyRMQ offers a custom solution that keeps your message
in queues while retrying in an exponential backoff [https://en.wikipedia.org/wiki/Exponential_backoff] fashion.

This approach uses dead letter exchanges and queues [https://www.rabbitmq.com/dlx.html] to republish a message to your
original queue once it has expired. PyRMQ creates this “retry” queue for you with the default naming convention of
appending your original queue with .retry.

from pyrmq import Consumer

def callback(data):
 print(f"Received {data}!")
 raise Exception

consumer = Consumer(
 exchange_name="exchange_name",
 queue_name="queue_name",
 routing_key="routing_key",
 callback=callback,
 is_dlk_retry_enabled=True,
)
consumer.start()

This will start a loop of passing your message between the original queue and the retry queue until it reaches
the default number of max_retries.

Using other exchange types

You can use another exchange type just by simply specifying it in the Publisher class. The default is
direct.

This is an example of how to publish to a headers exchange that will get routed
based on its headers.

User Guide

	Installation
	Stable Version

	Development Version
	Git Checkout

	PyPI

	Usage
	Publishing
	Retries

	Connecting

	Publishing

	Max retries reached

	Publish message with priorities

	Consuming
	Retries

	Connecting

	DLX-DLK Consumption Retry Logic

	Max retries reached

	API
	Publisher Class

	Consumer Class

	Testing
	RabbitMQ
	Run Docker image (recommended)

	Install and run RabbitMQ locally

	Using tox

PyRMQ Installation

There are multiple ways to install PyRMQ as long as multiple versions to
choose from.

Stable Version

PyRMQ is available at PyPI [https://pypi.org/project/PyRMQ/].

$ pip install pyrmq

Development Version

Since PyRMQ is continuously used in a growing number of internal microservices
all working with RabbitMQ, you can see or participate in its active
development in its GitHub repository [https://github.com/first-digital-finance/pyrmq].

There are two ways to work or collaborate with its development version.

Git Checkout

Clone the code from GitHub and run it in a virtualenv.

$ git clone git@github.com:first-digital-finance/pyrmq.git
$ virtualenv venv --distribute
$. venv/bin/activate
$ python setup.py install

This will setup PyRMQ and its dependencies on your local machine.
Just fetch/pull code from the master branch to keep your copy up to date.

PyPI

$ mkdir pyrmq
$ cd pyrmq
$ virtualenv venv --distribute
$. venv/bin/activate
$ pip install git+git://github.com/first-digital-finance/pyrmq.git

How to use PyRMQ

Publishing

Instantiate the Publisher class and plug in your application
specific settings. PyRMQ already works out of the box with RabbitMQ’s default initialization settings [https://hub.docker.com/_/rabbitmq].

from pyrmq import Publisher
publisher = Publisher(
 exchange_name="exchange_name",
 queue_name="queue_name",
 routing_key="routing_key",
)
publisher.publish({"pyrmq": "My first message"})

This publishes a message that uses a BlockingConnection [https://pika.readthedocs.io/en/stable/modules/adapters/blocking.html] on its own thread with default settings and
and provides a handler for its retries.

Retries

PyRMQ’s Publisher retries happen on two levels: connecting and publishing.

Connecting

PyRMQ instantiates a BlockingConnection [https://pika.readthedocs.io/en/stable/modules/adapters/blocking.html] when connecting. If this fails, it will retry for
2 more times by default with a delay of 5 seconds, a backoff base of 2 seconds, and a backoff constant of 5 seconds.
All these settings are configurable via the Publisher class.

Publishing

PyRMQ calls pika’s basic_publish [https://pika.readthedocs.io/en/stable/modules/channel.html#pika.channel.Channel.basic_publish] when publishing. If this fails, it will retry for
2 more times by default with a delay of 5 seconds, a backoff base of 2 seconds, and a backoff constant of 5 seconds.
All these settings are configurable via the Publisher class.

Max retries reached

When PyRMQ has tried one too many times, it will call your specified callback.

Publish message with priorities

To enable prioritization of messages, instantiate your queue with the queue
argument x-max-priority. It takes an integer that sets the number of possible
priority values with a higher number commanding more priority. Then, simply
publish your message with the priority argument specified. Any number higher
than the set max priority is floored or considered the same.
Read more about message priorities here [https://www.rabbitmq.com/priority.html]

from pyrmq import Publisher
publisher = Publisher(
 exchange_name="exchange_name",
 queue_name="queue_name",
 routing_key="routing_key",
 queue_args={"x-max-priority": 3}
)
publisher.publish({"pyrmq": "My first message"}, priority=1)

Warning

Adding arguments on an existing queue is not possible. If you wish to add queue arguments,
you will need to either delete the existing queue then recreate the queue with arguments or simply
make a new queue with the arguments.

Consuming

Instantiate the Consumer class and plug in your application specific settings.
PyRMQ already works out of the box with RabbitMQ’s default initialization settings [https://hub.docker.com/_/rabbitmq].

from pyrmq import Consumer

def callback(data):
 print(f"Received {data}!")

consumer = Consumer(
 exchange_name="exchange_name",
 queue_name="queue_name",
 routing_key="routing_key",
)

consumer.start()

Once the Consumer class is instantiated, just run start() to start its own thread that targets
pika’s start_consuming [https://pika.readthedocs.io/en/stable/modules/adapters/blocking.html#pika.adapters.blocking_connection.BlockingChannel.start_consuming] method on its own thread with default settings and and provides a handler for
its retries. Consumption calls basic_ack [https://pika.readthedocs.io/en/stable/modules/channel.html#pika.channel.Channel.basic_ack] with delivery_tag set to what the message’s method’s was.

Retries

PyRMQ’s Consumer retries happen on two levels: connecting and consuming.

Connecting

PyRMQ instantiates a BlockingConnection [https://pika.readthedocs.io/en/stable/modules/adapters/blocking.html] when connecting. If this fails, it will retry for
2 more times by default with a delay of 5 seconds, a backoff base of 2 seconds, and a backoff constant of 5 seconds.
All these settings are configurable via the Consumer class.

DLX-DLK Consumption Retry Logic

PyRMQ calls pika’s start_consuming [https://pika.readthedocs.io/en/stable/modules/adapters/blocking.html#pika.adapters.blocking_connection.BlockingChannel.start_consuming] when Consumer is instantiated. If your consumption callback
throws an exception, PyRMQ uses dead letter exchanges and queues [https://www.rabbitmq.com/dlx.html] to republish your messages to your
original queue once it has expired. PyRMQ already creates this “retry” queue for you with the default naming convention
of appending your original queue with .retry. This is simply enabled by setting the is_dlk_retry_enabled flag
on the Consumer class to True.

from pyrmq import Consumer

def callback(data):
 print(f"Received {data}!")
 raise Exception

consumer = Consumer(
 exchange_name="exchange_name",
 queue_name="queue_name",
 routing_key="routing_key",
 callback=callback,
 is_dlk_retry_enabled=True,
)
consumer.start()

This will start a loop of passing your message between the original queue and the retry queue until it reaches
the default number of max_retries.

Max retries reached

When PyRMQ has tried one too many times, it will call your specified callback.

API Documentation

Publisher Class

	
class pyrmq.Publisher(exchange_name: str, queue_name: Optional[str] = '', routing_key: Optional[str] = '', exchange_type: Optional[str] = 'direct', **kwargs)

	This class offers a BlockingConnection from pika that automatically handles
queue declares and bindings plus retry logic built for its connection and publishing.

	
__create_connection() → pika.adapters.blocking_connection.BlockingConnection

	Creates pika’s BlockingConnection from the given connection parameters.

	
__init__(exchange_name: str, queue_name: Optional[str] = '', routing_key: Optional[str] = '', exchange_type: Optional[str] = 'direct', **kwargs)

	
	Parameters

	
	exchange_name – Your exchange name.

	queue_name – Your queue name.

	routing_key – Your queue name.

	exchange_type – Exchange type to declare. Default: "direct"

	host – Your RabbitMQ host. Checks env var RABBITMQ_HOST. Default: "localhost"

	port – Your RabbitMQ port. Checks env var RABBITMQ_PORT. Default: 5672

	username – Your RabbitMQ username. Default: "guest"

	password – Your RabbitMQ password. Default: "guest"

	connection_attempts – How many times should PyRMQ try?. Default: 3

	retry_delay – Seconds between retries. Default: 5

	error_callback – Callback function to be called when connection_attempts is reached.

	infinite_retry – Tells PyRMQ to keep on retrying to publish while firing error_callback, if any. Default: False

	queue_args – Your queue arguments. Default: None

	
__send_reconnection_error_message(retry_count, error) → None

	Send error message to your preferred location.
:param retry_count: Amount retries the Publisher tried before sending an error message.
:param error: Error that prevented the Publisher from sending the message.

	
__weakref__

	list of weak references to the object (if defined)

	
connect(retry_count=1) → pika.adapters.blocking_connection.BlockingChannel

	Creates pika’s BlockingConnection and initializes queue bindings.
:param retry_count: Amount retries the Publisher tried before sending an error message.

	
declare_queue(channel) → None

	Declare and a bind a channel to a queue.
:param channel: pika Channel

	
publish(data: dict, priority: Optional[int] = None, message_properties: Optional[dict] = None, attempt: int = 0, retry_count: int = 1) → None

	Publishes data to RabbitMQ.
:param data: Data to be published.
:param priority: Message priority. Only works if x-max-priority is defined as queue argument.
:param message_properties: Message properties. Default: {"delivery_mode": 2}
:param attempt: Number of attempts made.
:param retry_count: Amount retries the Publisher tried before sending an error message.

Consumer Class

	
class pyrmq.Consumer(exchange_name: str, queue_name: str, routing_key: str, callback: Callable, exchange_type: Optional[str] = 'direct', **kwargs)

	This class uses a BlockingConnection from pika that automatically handles
queue declares and bindings plus retry logic built for its connection and consumption.
It starts its own thread upon initialization and runs pika’s start_consuming().

	
__create_connection() → pika.adapters.blocking_connection.BlockingConnection

	Creates a pika BlockingConnection from the given connection parameters.

	
__init__(exchange_name: str, queue_name: str, routing_key: str, callback: Callable, exchange_type: Optional[str] = 'direct', **kwargs)

	
	Parameters

	
	exchange_name – Your exchange name.

	queue_name – Your queue name.

	routing_key – Your queue name.

	callback – Your callback that should handle a consumed message

	host – Your RabbitMQ host. Default: "localhost"

	port – Your RabbitMQ port. Default: 5672

	username – Your RabbitMQ username. Default: "guest"

	password – Your RabbitMQ password. Default: "guest"

	connection_attempts – How many times should PyRMQ try? Default: 3

	is_dlk_retry_enabled – Flag to enable DLK-based retry logic of consumed messages. Default: False

	retry_delay – Seconds between retries. Default: 5

	retry_backoff_base – Exponential backoff base in seconds. Default: 2

	retry_queue_suffix – The suffix that will be appended to the queue_name to act as the name of the retry_queue. Default: retry

	max_retries – Number of maximum retries for DLK retry logic. Default: 20

	queue_args – Your queue arguments. Default: None

	
__send_consume_error_message(retry_count: int, error: Exception) → None

	Send error message to your preferred location.
:param retry_count: Amount retries the Consumer tried before sending an error message.
:param error: Error that prevented the Consumer from processing the callback.

	
__send_reconnection_error_message(retry_count: int, error: Union[pika.exceptions.AMQPConnectionError, ConnectionResetError, pika.exceptions.ChannelClosedByBroker]) → None

	Send error message to your preferred location.
:param retry_count: Amount retries the Publisher tried before sending an error message.
:param error: Error that prevented the Publisher from sending the message.

	
__weakref__

	list of weak references to the object (if defined)

	
_compute_expiration(retry_count: int) → int

	Computes message expiration time from the retry queue in seconds.

	
_consume_message(channel, method, properties, data: dict) → None

	Wraps the user provided callback and gracefully handles its errors and
calling pika’s basic_ack once successful.
:param channel: pika’s Channel this message was received.
:param method: pika’s basic Return
:param properties: pika’s BasicProperties
:param data: Data received in bytes.

	
_publish_to_retry_queue(data: dict, properties, retry_reason: Exception = None) → None

	Publishes message to retry queue with the appropriate metadata in the headers.

	
close() → None

	Manually closes a connection to RabbitMQ. Useful for debugging and tests.

	
connect(retry_count=1) → None

	Creates a BlockingConnection from pika and initializes queue bindings.
:param retry_count: Amount retries the Publisher tried before sending an error message.

	
consume(retry_count=1) → None

	Wraps pika’s basic_consume() and start_consuming() with retry logic.

	
declare_queue() → None

	Declare and a bind a channel to a queue.

Testing PyRMQ

We’re not gonna lie. Testing RabbitMQ, mocks or not, is infuriating. Much harder than a traditional
integration testing with a database. That said, we hope that you could help us expand on
what we have started should you feel our current tests aren’t enough.

RabbitMQ

Since PyRMQ strives to be as complete with testing as it can be, it has several integration tests
that need a running RabbitMQ to pass. Currently, PyRMQ is tested against rabbitmq:3.8.

Run Docker image (recommended)

$ docker run -d --hostname my-rabbit --name rabbitmq -p 5672:5672 rabbitmq:alpine

This allows you to connect to RabbitMQ via localhost through port 5672. Default credentials are
guest/guest.

Install and run RabbitMQ locally

$ # Depending on your OS
$ # Ubuntu
$ sudo apt install rabbitmq
$ # Arch Linux
$ sudo pacman -S rabbitmq

Using tox

Install pip install tox and run:

$ tox
$ tox -e py38 # If this is what you have installed or don't want to bother testing for other versions

Index

 _
 | C
 | D
 | P

_

 	
 	__create_connection() (pyrmq.Consumer method)

 	(pyrmq.Publisher method)

 	__init__() (pyrmq.Consumer method)

 	(pyrmq.Publisher method)

 	__send_consume_error_message() (pyrmq.Consumer method)

 	__send_reconnection_error_message() (pyrmq.Consumer method)

 	(pyrmq.Publisher method)

 	
 	__weakref__ (pyrmq.Consumer attribute)

 	(pyrmq.Publisher attribute)

 	_compute_expiration() (pyrmq.Consumer method)

 	_consume_message() (pyrmq.Consumer method)

 	_publish_to_retry_queue() (pyrmq.Consumer method)

C

 	
 	close() (pyrmq.Consumer method)

 	connect() (pyrmq.Consumer method)

 	(pyrmq.Publisher method)

 	
 	consume() (pyrmq.Consumer method)

 	Consumer (class in pyrmq)

D

 	
 	declare_queue() (pyrmq.Consumer method)

 	(pyrmq.Publisher method)

P

 	
 	publish() (pyrmq.Publisher method)

 	
 	Publisher (class in pyrmq)

 nav.xhtml

 Table of Contents

 		
 PyRMQ

 		
 Installation

 		
 Stable Version

 		
 Development Version

 		
 Git Checkout

 		
 PyPI

 		
 Usage

 		
 Publishing

 		
 Retries

 		
 Connecting

 		
 Publishing

 		
 Max retries reached

 		
 Publish message with priorities

 		
 Consuming

 		
 Retries

 		
 Connecting

 		
 DLX-DLK Consumption Retry Logic

 		
 Max retries reached

 		
 API

 		
 Publisher Class

 		
 Consumer Class

 		
 Testing

 		
 RabbitMQ

 		
 Run Docker image (recommended)

 		
 Install and run RabbitMQ locally

 		
 Using tox

_static/minus.png

_static/plus.png

_static/file.png

