
PyRMQ

Alexandre Gerona & Jasper Sibayan

Dec 11, 2020

CONTENTS

1 Features 3

2 Quickstart 5

3 Publish message with priorities 7

4 Consuming 9

5 DLX-DLK Retry Logic 11

6 Using other exchange types 13

7 User Guide 15
7.1 PyRMQ Installation . 15
7.2 How to use PyRMQ . 16
7.3 API Documentation . 18
7.4 Testing PyRMQ . 21

Index 23

i

ii

PyRMQ

Python with RabbitMQ—simplified so you won’t have to.

CONTENTS 1

https://github.com/first-digital-finance/pyrmq
https://pypi.org/project/PyRMQ/
https://pyrmq.readthedocs.io
https://pypi.org/project/PyRMQ/
https://altusgerona.mit-license.org
https://github.com/PyCQA/isort

PyRMQ

2 CONTENTS

CHAPTER

ONE

FEATURES

Stop worrying about boilerplating and implementing retry logic on your queues. PyRMQ already does it for you.

• Use out-of-the-box Consumer and Publisher classes created from pika for your projects and tests.

• Custom DLX-DLK-based retry logic for message consumption.

• Message priorities

• Works with Python 3.

• Production ready

3

https://pypi.org/project/pika/

PyRMQ

4 Chapter 1. Features

CHAPTER

TWO

QUICKSTART

PyRMQ is available at PyPI.

$ pip install pyrmq

Just instantiate the feature you want with their respective settings. PyRMQ already works out of the box with Rab-
bitMQ’s default initialization settings.

from pyrmq import Publisher
publisher = Publisher(

exchange_name="exchange_name",
queue_name="queue_name",
routing_key="routing_key",

)
publisher.publish({"pyrmq": "My first message"})

5

https://pypi.org/project/PyRMQ/
https://hub.docker.com/_/rabbitmq)

PyRMQ

6 Chapter 2. Quickstart

CHAPTER

THREE

PUBLISH MESSAGE WITH PRIORITIES

To enable prioritization of messages, instantiate your queue with the queue argument x-max-priority. It takes an
integer that sets the number of possible priority values with a higher number commanding more priority. Then, simply
publish your message with the priority argument specified. Any number higher than the set max priority is floored or
considered the same. Read more about message priorities here

from pyrmq import Publisher
publisher = Publisher(

exchange_name="exchange_name",
queue_name="queue_name",
routing_key="routing_key",
queue_args={"x-max-priority": 3}

)
publisher.publish({"pyrmq": "My first message"}, priority=1)

Warning: Adding arguments on an existing queue is not possible. If you wish to add queue arguments, you will
need to either delete the existing queue then recreate the queue with arguments or simply make a new queue with
the arguments.

7

https://www.rabbitmq.com/priority.html

PyRMQ

8 Chapter 3. Publish message with priorities

CHAPTER

FOUR

CONSUMING

Instantiating a Consumer automatically starts it in its own thread making it non-blocking by default. When run after
the code from before, you should be able to receive the published data.

from pyrmq import Consumer

def callback(data):
print(f"Received {data}!")

consumer = Consumer(
exchange_name="exchange_name",
queue_name="queue_name",
routing_key="routing_key",

)

consumer.start()

9

PyRMQ

10 Chapter 4. Consuming

CHAPTER

FIVE

DLX-DLK RETRY LOGIC

What if you wanted to retry a failure on a consumed message? PyRMQ offers a custom solution that keeps your
message in queues while retrying in an exponential backoff fashion.

This approach uses dead letter exchanges and queues to republish a message to your original queue once it has expired.
PyRMQ creates this “retry” queue for you with the default naming convention of appending your original queue with
.retry.

from pyrmq import Consumer

def callback(data):
print(f"Received {data}!")
raise Exception

consumer = Consumer(
exchange_name="exchange_name",
queue_name="queue_name",
routing_key="routing_key",
callback=callback,
is_dlk_retry_enabled=True,

)
consumer.start()

This will start a loop of passing your message between the original queue and the retry queue until it reaches the
default number of max_retries.

11

https://en.wikipedia.org/wiki/Exponential_backoff
https://www.rabbitmq.com/dlx.html

PyRMQ

12 Chapter 5. DLX-DLK Retry Logic

CHAPTER

SIX

USING OTHER EXCHANGE TYPES

You can use another exchange type just by simply specifying it in the Publisher class. The default is direct.

This is an example of how to publish to a headers exchange that will get routed based on its headers.

13

PyRMQ

14 Chapter 6. Using other exchange types

CHAPTER

SEVEN

USER GUIDE

7.1 PyRMQ Installation

There are multiple ways to install PyRMQ as long as multiple versions to choose from.

7.1.1 Stable Version

PyRMQ is available at PyPI.

$ pip install pyrmq

7.1.2 Development Version

Since PyRMQ is continuously used in a growing number of internal microservices all working with RabbitMQ, you
can see or participate in its active development in its GitHub repository.

There are two ways to work or collaborate with its development version.

Git Checkout

Clone the code from GitHub and run it in a virtualenv.

$ git clone git@github.com:first-digital-finance/pyrmq.git
$ virtualenv venv --distribute
$. venv/bin/activate
$ python setup.py install

This will setup PyRMQ and its dependencies on your local machine. Just fetch/pull code from the master branch to
keep your copy up to date.

15

https://pypi.org/project/PyRMQ/
https://github.com/first-digital-finance/pyrmq

PyRMQ

PyPI

$ mkdir pyrmq
$ cd pyrmq
$ virtualenv venv --distribute
$. venv/bin/activate
$ pip install git+git://github.com/first-digital-finance/pyrmq.git

7.2 How to use PyRMQ

7.2.1 Publishing

Instantiate the Publisher class and plug in your application specific settings. PyRMQ already works out of the box
with RabbitMQ’s default initialization settings.

from pyrmq import Publisher
publisher = Publisher(

exchange_name="exchange_name",
queue_name="queue_name",
routing_key="routing_key",

)
publisher.publish({"pyrmq": "My first message"})

This publishes a message that uses a BlockingConnection on its own thread with default settings and and provides a
handler for its retries.

Retries

PyRMQ’s Publisher retries happen on two levels: connecting and publishing.

Connecting

PyRMQ instantiates a BlockingConnection when connecting. If this fails, it will retry for 2 more times by default
with a delay of 5 seconds, a backoff base of 2 seconds, and a backoff constant of 5 seconds. All these settings are
configurable via the Publisher class.

Publishing

PyRMQ calls pika’s basic_publish when publishing. If this fails, it will retry for 2 more times by default with a delay
of 5 seconds, a backoff base of 2 seconds, and a backoff constant of 5 seconds. All these settings are configurable via
the Publisher class.

16 Chapter 7. User Guide

https://hub.docker.com/_/rabbitmq
https://pika.readthedocs.io/en/stable/modules/adapters/blocking.html
https://pika.readthedocs.io/en/stable/modules/adapters/blocking.html
https://pika.readthedocs.io/en/stable/modules/channel.html#pika.channel.Channel.basic_publish

PyRMQ

Max retries reached

When PyRMQ has tried one too many times, it will call your specified callback.

7.2.2 Publish message with priorities

To enable prioritization of messages, instantiate your queue with the queue argument x-max-priority. It takes an
integer that sets the number of possible priority values with a higher number commanding more priority. Then, simply
publish your message with the priority argument specified. Any number higher than the set max priority is floored or
considered the same. Read more about message priorities here

from pyrmq import Publisher
publisher = Publisher(

exchange_name="exchange_name",
queue_name="queue_name",
routing_key="routing_key",
queue_args={"x-max-priority": 3}

)
publisher.publish({"pyrmq": "My first message"}, priority=1)

Warning: Adding arguments on an existing queue is not possible. If you wish to add queue arguments, you will
need to either delete the existing queue then recreate the queue with arguments or simply make a new queue with
the arguments.

7.2.3 Consuming

Instantiate the Consumer class and plug in your application specific settings. PyRMQ already works out of the box
with RabbitMQ’s default initialization settings.

from pyrmq import Consumer

def callback(data):
print(f"Received {data}!")

consumer = Consumer(
exchange_name="exchange_name",
queue_name="queue_name",
routing_key="routing_key",

)

consumer.start()

Once the Consumer class is instantiated, just run start() to start its own thread that targets pika’s start_consuming
method on its own thread with default settings and and provides a handler for its retries. Consumption calls basic_ack
with delivery_tag set to what the message’s method’s was.

7.2. How to use PyRMQ 17

https://www.rabbitmq.com/priority.html
https://hub.docker.com/_/rabbitmq
https://pika.readthedocs.io/en/stable/modules/adapters/blocking.html#pika.adapters.blocking_connection.BlockingChannel.start_consuming
https://pika.readthedocs.io/en/stable/modules/channel.html#pika.channel.Channel.basic_ack

PyRMQ

Retries

PyRMQ’s Consumer retries happen on two levels: connecting and consuming.

Connecting

PyRMQ instantiates a BlockingConnection when connecting. If this fails, it will retry for 2 more times by default
with a delay of 5 seconds, a backoff base of 2 seconds, and a backoff constant of 5 seconds. All these settings are
configurable via the Consumer class.

DLX-DLK Consumption Retry Logic

PyRMQ calls pika’s start_consuming when Consumer is instantiated. If your consumption callback throws an ex-
ception, PyRMQ uses dead letter exchanges and queues to republish your messages to your original queue once it has
expired. PyRMQ already creates this “retry” queue for you with the default naming convention of appending your
original queue with .retry. This is simply enabled by setting the is_dlk_retry_enabled flag on the Consumer
class to True.

from pyrmq import Consumer

def callback(data):
print(f"Received {data}!")
raise Exception

consumer = Consumer(
exchange_name="exchange_name",
queue_name="queue_name",
routing_key="routing_key",
callback=callback,
is_dlk_retry_enabled=True,

)
consumer.start()

This will start a loop of passing your message between the original queue and the retry queue until it reaches the
default number of max_retries.

Max retries reached

When PyRMQ has tried one too many times, it will call your specified callback.

7.3 API Documentation

7.3.1 Publisher Class

class pyrmq.Publisher(exchange_name: str, queue_name: Optional[str] = '', routing_key: Op-
tional[str] = '', exchange_type: Optional[str] = 'direct', **kwargs)

This class offers a BlockingConnection from pika that automatically handles queue declares and bindings
plus retry logic built for its connection and publishing.

__create_connection()→ pika.adapters.blocking_connection.BlockingConnection
Creates pika’s BlockingConnection from the given connection parameters.

18 Chapter 7. User Guide

https://pika.readthedocs.io/en/stable/modules/adapters/blocking.html
https://pika.readthedocs.io/en/stable/modules/adapters/blocking.html#pika.adapters.blocking_connection.BlockingChannel.start_consuming
https://www.rabbitmq.com/dlx.html

PyRMQ

__init__(exchange_name: str, queue_name: Optional[str] = '', routing_key: Optional[str] = '', ex-
change_type: Optional[str] = 'direct', **kwargs)

Parameters

• exchange_name – Your exchange name.

• queue_name – Your queue name.

• routing_key – Your queue name.

• exchange_type – Exchange type to declare. Default: "direct"

• host – Your RabbitMQ host. Checks env var RABBITMQ_HOST. Default:
"localhost"

• port – Your RabbitMQ port. Checks env var RABBITMQ_PORT. Default: 5672

• username – Your RabbitMQ username. Default: "guest"

• password – Your RabbitMQ password. Default: "guest"

• connection_attempts – How many times should PyRMQ try?. Default: 3

• retry_delay – Seconds between retries. Default: 5

• error_callback – Callback function to be called when connection_attempts is
reached.

• infinite_retry – Tells PyRMQ to keep on retrying to publish while firing er-
ror_callback, if any. Default: False

• queue_args – Your queue arguments. Default: None

__send_reconnection_error_message(retry_count, error)→ None
Send error message to your preferred location. :param retry_count: Amount retries the Publisher tried be-
fore sending an error message. :param error: Error that prevented the Publisher from sending the message.

__weakref__
list of weak references to the object (if defined)

connect(retry_count=1)→ pika.adapters.blocking_connection.BlockingChannel
Creates pika’s BlockingConnection and initializes queue bindings. :param retry_count: Amount
retries the Publisher tried before sending an error message.

declare_queue(channel)→ None
Declare and a bind a channel to a queue. :param channel: pika Channel

publish(data: dict, priority: Optional[int] = None, message_properties: Optional[dict] = None, at-
tempt: int = 0, retry_count: int = 1)→ None

Publishes data to RabbitMQ. :param data: Data to be published. :param priority: Message priority.
Only works if x-max-priority is defined as queue argument. :param message_properties: Message
properties. Default: {"delivery_mode": 2} :param attempt: Number of attempts made. :param
retry_count: Amount retries the Publisher tried before sending an error message.

7.3. API Documentation 19

PyRMQ

7.3.2 Consumer Class

class pyrmq.Consumer(exchange_name: str, queue_name: str, routing_key: str, callback: Callable,
**kwargs)

This class uses a BlockingConnection from pika that automatically handles queue declares and bindings
plus retry logic built for its connection and consumption. It starts its own thread upon initialization and runs
pika’s start_consuming().

__create_connection()→ pika.adapters.blocking_connection.BlockingConnection
Creates a pika BlockingConnection from the given connection parameters.

__init__(exchange_name: str, queue_name: str, routing_key: str, callback: Callable, **kwargs)

Parameters

• exchange_name – Your exchange name.

• queue_name – Your queue name.

• routing_key – Your queue name.

• callback – Your callback that should handle a consumed message

• host – Your RabbitMQ host. Default: "localhost"

• port – Your RabbitMQ port. Default: 5672

• username – Your RabbitMQ username. Default: "guest"

• password – Your RabbitMQ password. Default: "guest"

• connection_attempts – How many times should PyRMQ try? Default: 3

• is_dlk_retry_enabled – Flag to enable DLK-based retry logic of consumed mes-
sages. Default: False

• retry_delay – Seconds between retries. Default: 5

• retry_backoff_base – Exponential backoff base in seconds. Default: 2

• retry_queue_suffix – The suffix that will be appended to the queue_name to act
as the name of the retry_queue. Default: retry

• max_retries – Number of maximum retries for DLK retry logic. Default: 20

• queue_args – Your queue arguments. Default: None

__send_consume_error_message(retry_count: int, error: Exception)→ None
Send error message to your preferred location. :param retry_count: Amount retries the Consumer tried
before sending an error message. :param error: Error that prevented the Consumer from processing the
callback.

__send_reconnection_error_message(retry_count: int, error:
Union[pika.exceptions.AMQPConnectionError,
ConnectionResetError,
pika.exceptions.ChannelClosedByBroker])→ None

Send error message to your preferred location. :param retry_count: Amount retries the Publisher tried be-
fore sending an error message. :param error: Error that prevented the Publisher from sending the message.

__weakref__
list of weak references to the object (if defined)

_compute_expiration(retry_count: int)→ int
Computes message expiration time from the retry queue in seconds.

20 Chapter 7. User Guide

PyRMQ

_consume_message(channel, method, properties, data: dict)→ None
Wraps the user provided callback and gracefully handles its errors and calling pika’s basic_ack once
successful. :param channel: pika’s Channel this message was received. :param method: pika’s basic
Return :param properties: pika’s BasicProperties :param data: Data received in bytes.

_publish_to_retry_queue(data: dict, properties, retry_reason: Exception = None)→ None
Publishes message to retry queue with the appropriate metadata in the headers.

close()→ None
Manually closes a connection to RabbitMQ. Useful for debugging and tests.

connect(retry_count=1)→ None
Creates a BlockingConnection from pika and initializes queue bindings. :param retry_count: Amount
retries the Publisher tried before sending an error message.

consume(retry_count=1)→ None
Wraps pika’s basic_consume() and start_consuming() with retry logic.

declare_queue()→ None
Declare and a bind a channel to a queue.

7.4 Testing PyRMQ

We’re not gonna lie. Testing RabbitMQ, mocks or not, is infuriating. Much harder than a traditional integration testing
with a database. That said, we hope that you could help us expand on what we have started should you feel our current
tests aren’t enough.

7.4.1 RabbitMQ

Since PyRMQ strives to be as complete with testing as it can be, it has several integration tests that need a running
RabbitMQ to pass. Currently, PyRMQ is tested against rabbitmq:3.8.

Run Docker image (recommended)

$ docker run -d --hostname my-rabbit --name rabbitmq -p 5672:5672 rabbitmq:alpine

This allows you to connect to RabbitMQ via localhost through port 5672. Default credentials are guest/guest.

Install and run RabbitMQ locally

$ # Depending on your OS
$ # Ubuntu
$ sudo apt install rabbitmq
$ # Arch Linux
$ sudo pacman -S rabbitmq

7.4. Testing PyRMQ 21

PyRMQ

7.4.2 Using tox

Install pip install tox and run:

$ tox
$ tox -e py38 # If this is what you have installed or don't want to bother testing
→˓for other versions

22 Chapter 7. User Guide

INDEX

Symbols
__create_connection() (pyrmq.Consumer

method), 20
__create_connection() (pyrmq.Publisher

method), 18
__init__() (pyrmq.Consumer method), 20
__init__() (pyrmq.Publisher method), 18
__send_consume_error_message()

(pyrmq.Consumer method), 20
__send_reconnection_error_message()

(pyrmq.Consumer method), 20
__send_reconnection_error_message()

(pyrmq.Publisher method), 19
__weakref__ (pyrmq.Consumer attribute), 20
__weakref__ (pyrmq.Publisher attribute), 19
_compute_expiration() (pyrmq.Consumer

method), 20
_consume_message() (pyrmq.Consumer method),

20
_publish_to_retry_queue() (pyrmq.Consumer

method), 21

C
close() (pyrmq.Consumer method), 21
connect() (pyrmq.Consumer method), 21
connect() (pyrmq.Publisher method), 19
consume() (pyrmq.Consumer method), 21
Consumer (class in pyrmq), 20

D
declare_queue() (pyrmq.Consumer method), 21
declare_queue() (pyrmq.Publisher method), 19

P
publish() (pyrmq.Publisher method), 19
Publisher (class in pyrmq), 18

23

	Features
	Quickstart
	Publish message with priorities
	Consuming
	DLX-DLK Retry Logic
	Using other exchange types
	User Guide
	PyRMQ Installation
	How to use PyRMQ
	API Documentation
	Testing PyRMQ

	Index

