
PyRMQ

Alexandre Gerona & Jasper Sibayan

Jun 17, 2020

CONTENTS

1 Features 3

2 Quickstart 5

3 User Guide 7
3.1 PyRMQ Installation . 7
3.2 How to use PyRMQ . 8
3.3 API Documentation . 10
3.4 Testing PyRMQ . 12

Index 13

i

ii

PyRMQ

Python with RabbitMQ—simplified so you won’t have to.

CONTENTS 1

https://github.com/first-digital-finance/pyrmq
https://pypi.org/project/PyRMQ/
https://codecov.io/gh/first-digital-finance/pyrmq
https://altusgerona.mit-license.org

PyRMQ

2 CONTENTS

CHAPTER

ONE

FEATURES

Stop worrying about boilerplating and implementing retry logic on your queues. PyRMQ already does it for you.

• Use out-of-the-box and thread-safe Consumer and Publisher classes created from pika for your projects
and tests.

• Built-in retry logic for connecting, consuming, and publishing. Can also handle infinite retries.

• Works with Python 3.

• Production ready

3

https://pypi.org/project/pika/

PyRMQ

4 Chapter 1. Features

CHAPTER

TWO

QUICKSTART

PyRMQ is available at PyPI.

$ pip install pyrmq

Just instantiate the feature you want with their respective settings. PyRMQ already works out of the box with Rab-
bitMQ’s default initialization settings.

from pyrmq import Publisher
publisher = Publisher(

exchange_name="exchange_name",
queue_name="queue_name",
routing_key="routing_key",

)
publisher.publish({"pyrmq": "My first message"})

5

https://pypi.org/project/PyRMQ/
https://hub.docker.com/_/rabbitmq)

PyRMQ

6 Chapter 2. Quickstart

CHAPTER

THREE

USER GUIDE

3.1 PyRMQ Installation

There are multiple ways to install PyRMQ as long as multiple versions to choose from.

3.1.1 Stable Version

PyRMQ is available at PyPI.

$ pip install pyrmq

3.1.2 Development Version

Since PyRMQ is continuously used in a growing number of internal microservices all working with RabbitMQ, you
can see or participate in its active development in its GitHub repository.

There are two ways to work or collaborate with its development version.

Git Checkout

Clone the code from GitHub and run it in a virtualenv.

$ git clone git@github.com:altusgerona/pyrmq.git
$ virtualenv venv --distribute
$. venv/bin/activate
$ python setup.py install

This will setup PyRMQ and its dependencies on your local machine. Just fetch/pull code from the master branch to
keep your copy up to date.

7

https://pypi.org/project/Cerberus
https://github.com/altusgerona/pyrmq

PyRMQ

PyPI

$ mkdir pyrmq
$ cd pyrmq
$ virtualenv venv --distribute
$. venv/bin/activate
$ pip install git+git://github.com/altusgerona/pyrmq.git

3.2 How to use PyRMQ

3.2.1 Publishing

Instantiate the Publisher class and plug in your application specific settings. PyRMQ already works out of the box
with RabbitMQ’s default initialization settings.

from pyrmq import Publisher
publisher = Publisher(

exchange_name="exchange_name",
queue_name="queue_name",
routing_key="routing_key",

)
publisher.publish({"pyrmq": "My first message"})

This publishes a message that uses a BlockingConnection on its own thread with default settings and and provides a
handler for its retries.

Retries

PyRMQ’s Publisher retries happen on two levels: connecting and publishing.

Connecting

PyRMQ instantiates a BlockingConnection when connecting. If this fails, it will retry for 2 more times by default
with a delay of 5 seconds, a backoff base of 2 seconds, and a backoff constant of 5 seconds. All these settings are
configurable via the Publisher class.

Publishing

PyRMQ calls pika’s basic_publish when publishing. If this fails, it will retry for 2 more times by default with a delay
of 5 seconds, a backoff base of 2 seconds, and a backoff constant of 5 seconds. All these settings are configurable via
the Publisher class.

8 Chapter 3. User Guide

https://hub.docker.com/_/rabbitmq
https://pika.readthedocs.io/en/stable/modules/adapters/blocking.html
https://pika.readthedocs.io/en/stable/modules/adapters/blocking.html
https://pika.readthedocs.io/en/stable/modules/channel.html#pika.channel.Channel.basic_publish

PyRMQ

Max retries reached

When PyRMQ has tried one too many times, it will call your specified callback.

3.2.2 Consuming

Instantiate the Consumer class and plug in your application specific settings. PyRMQ already works out of the box
with RabbitMQ’s default initialization settings.

from pyrmq import Consumer

def callback(data):
print(f"Received {data}!")

consumer = Consumer(
exchange_name="exchange_name",
queue_name="queue_name",
routing_key="routing_key",

)

consumer.start()

Once the Consumer class is instantiated, just run start() to start its own thread that targets pika’s start_consuming
method on its own thread with default settings and and provides a handler for its retries. Consumption calls basic_ack
with delivery_tag set to what the message’s method’s was.

Retries

PyRMQ’s Consumer retries happen on two levels: connecting and consuming.

Connecting

PyRMQ instantiates a BlockingConnection when connecting. If this fails, it will retry for 2 more times by default
with a delay of 5 seconds, a backoff base of 2 seconds, and a backoff constant of 5 seconds. All these settings are
configurable via the Consumer class.

Consuming

PyRMQ calls pika’s start_consuming when Consumer is instantiated. If this fails, it will retry for 2 more times by
default with a delay of 5 seconds, a backoff base of 2 seconds, and a backoff constant of 5 seconds. All these settings
are configurable via the Consumer class.

3.2. How to use PyRMQ 9

https://hub.docker.com/_/rabbitmq
https://pika.readthedocs.io/en/stable/modules/adapters/blocking.html#pika.adapters.blocking_connection.BlockingChannel.start_consuming
https://pika.readthedocs.io/en/stable/modules/channel.html#pika.channel.Channel.basic_ack
https://pika.readthedocs.io/en/stable/modules/adapters/blocking.html
https://pika.readthedocs.io/en/stable/modules/adapters/blocking.html#pika.adapters.blocking_connection.BlockingChannel.start_consuming

PyRMQ

Max retries reached

When PyRMQ has tried one too many times, it will call your specified callback.

3.3 API Documentation

3.3.1 Publisher Class

class pyrmq.Publisher(exchange_name: str, queue_name: str, routing_key: str, **kwargs)
This class offers a BlockingConnection from pika that automatically handles queue declares and bindings
plus retry logic built for its connection and publishing.

_Publisher__create_connection()→ pika.adapters.blocking_connection.BlockingConnection
Creates pika’s BlockingConnection from the given connection parameters.

_Publisher__send_reconnection_error_message(retry_count, error)→ None
Send error message to your preferred location. :param retry_count: Amount retries the Publisher tried be-
fore sending an error message. :param error: Error that prevented the Publisher from sending the message.

__init__(exchange_name: str, queue_name: str, routing_key: str, **kwargs)

Parameters

• exchange_name – Your exchange name.

• queue_name – Your queue name.

• routing_key – Your queue name.

• host – Your RabbitMQ host. Checks env var RABBITMQ_HOST. Default:
"localhost"

• port – Your RabbitMQ port. Checks env var RABBITMQ_PORT. Default: 5672

• username – Your RabbitMQ username. Default: "guest"

• password – Your RabbitMQ password. Default: "guest"

• connection_attempts – How many times should PyRMQ try?. Default: 3

• retry_delay – Seconds between retries.. Default: 5

• error_callback – Callback function to be called when connection_attempts is
reached.

• infinite_retry – Tells PyRMQ to keep on retrying to publish while firing er-
ror_callback, if any. Default: False

__weakref__
list of weak references to the object (if defined)

connect(retry_count=1) -> (<class 'pika.adapters.blocking_connection.BlockingConnection'>, <class
'pika.adapters.blocking_connection.BlockingChannel'>)

Creates pika’s BlockingConnection and initializes queue bindings. :param retry_count: Amount
retries the Publisher tried before sending an error message.

declare_queue(channel)→ None
Declare and a bind a channel to a queue. :param channel: pika Channel

publish(data: dict, attempt=0, retry_count=1)→ None
Publishes data to RabbitMQ. :param data: Data to be published. :param attempt: Number of attempts
made. :param retry_count: Amount retries the Publisher tried before sending an error message.

10 Chapter 3. User Guide

PyRMQ

3.3.2 Consumer Class

class pyrmq.Consumer(exchange_name: str, queue_name: str, routing_key: str, callback: Callable,
**kwargs)

This class uses a BlockingConnection from pika that automatically handles queue declares and bindings
plus retry logic built for its connection and consumption. It starts its own thread upon initialization and runs
pika’s start_consuming().

_Consumer__create_connection()→ pika.adapters.blocking_connection.BlockingConnection
Creates a pika BlockingConnection from the given connection parameters.

_Consumer__send_reconnection_error_message(retry_count, error)→ None
Send error message to your preferred location. :param retry_count: Amount retries the Publisher tried be-
fore sending an error message. :param error: Error that prevented the Publisher from sending the message.

__init__(exchange_name: str, queue_name: str, routing_key: str, callback: Callable, **kwargs)

Parameters

• exchange_name – Your exchange name.

• queue_name – Your queue name.

• routing_key – Your queue name.

• callback – Your callback that should handle a consumed message

• host – Your RabbitMQ host. Default: "localhost"

• port – Your RabbitMQ port. Default: 5672

• username – Your RabbitMQ username. Default: "guest"

• password – Your RabbitMQ password. Default: "guest"

• connection_attempts – How many times should PyRMQ try? Default: 3

• retry_delay – Seconds between retries.. Default: 5

• retry_backoff_base – Exponential backoff base in seconds. Default: 2

• retry_backoff_constant_secs – Exponential backoff constant in seconds. De-
fault: 5

__weakref__
list of weak references to the object (if defined)

_consume_message(channel, method, properties, data)→ None
Wraps the user provided callback and gracefully handles its errors and calling pika’s basic_ack once
successful. :param channel: pika’s Channel this message was received. :param method: pika’s basic
Return :param properties: pika’s BasicProperties :param data: Data received in bytes.

close()→ None
Manually closes a connection to RabbitMQ. Useful for debugging and tests.

connect(retry_count=1)→ None
Creates a BlockingConnection from pika and initializes queue bindings. :param retry_count: Amount
retries the Publisher tried before sending an error message.

consume(retry_count=1)→ None
Wraps pika’s basic_consume() and start_consuming() with retry logic.

3.3. API Documentation 11

PyRMQ

3.4 Testing PyRMQ

We’re not gonna lie. Testing RabbitMQ, mocks or not, is infuriating. Much harder than a traditional integration testing
with a database. That said, we hope that you could help us expand on what we have started should you feel our current
tests aren’t enough.

3.4.1 RabbitMQ

Since PyRMQ strives to be as complete with testing as it can be, it has several integration tests that need a running
RabbitMQ to pass. Currently, PyRMQ is tested against rabbitmq:3.8.

Run Docker image (recommended)

$ docker run -d --hostname my-rabbit --name rabbitmq -p 5672:5672 rabbitmq:alpine

This allows you to connect to RabbitMQ via localhost through port 5672. Default credentials are guest/guest.

Install and run RabbitMQ locally

$ # Depending on your OS
$ # Ubuntu
$ sudo apt install rabbitmq
$ # Arch Linux
$ sudo pacman -S rabbitmq

3.4.2 Using tox

Install pip install tox and run:

$ tox
$ tox -e py38 # If this is what you have installed or don't want to bother testing
→˓for other versions

12 Chapter 3. User Guide

INDEX

Symbols
_Consumer__create_connection()

(pyrmq.Consumer method), 11
_Consumer__send_reconnection_error_message()

(pyrmq.Consumer method), 11
_Publisher__create_connection()

(pyrmq.Publisher method), 10
_Publisher__send_reconnection_error_message()

(pyrmq.Publisher method), 10
__init__() (pyrmq.Consumer method), 11
__init__() (pyrmq.Publisher method), 10
__weakref__ (pyrmq.Consumer attribute), 11
__weakref__ (pyrmq.Publisher attribute), 10
_consume_message() (pyrmq.Consumer method),

11

C
close() (pyrmq.Consumer method), 11
connect() (pyrmq.Consumer method), 11
connect() (pyrmq.Publisher method), 10
consume() (pyrmq.Consumer method), 11
Consumer (class in pyrmq), 11

D
declare_queue() (pyrmq.Publisher method), 10

P
publish() (pyrmq.Publisher method), 10
Publisher (class in pyrmq), 10

13

	Features
	Quickstart
	User Guide
	PyRMQ Installation
	How to use PyRMQ
	API Documentation
	Testing PyRMQ

	Index

