
PyRMQ

Alexandre Gerona & Jasper Sibayan

Jun 16, 2020

CONTENTS

1 Features 3

2 Quickstart 5

3 User Guide 7
3.1 PyRMQ Installation . 7
3.2 How to use PyRMQ . 8
3.3 API Documentation . 10
3.4 Testing PyRMQ . 10

i

ii

PyRMQ

Python with RabbitMQ—simplified so you won’t have to.

CONTENTS 1

https://github.com/first-digital-finance/pyrmq
https://pypi.org/project/PyRMQ/
https://codecov.io/gh/first-digital-finance/pyrmq
https://altusgerona.mit-license.org

PyRMQ

2 CONTENTS

CHAPTER

ONE

FEATURES

Stop worrying about boilerplating and implementing retry logic on your queues. PyRMQ already does it for you.

• Use out-of-the-box and thread-safe Consumer and Publisher classes created from pika for your projects
and tests.

• Built-in retry-backoff logic for connecting, consuming, and publishing.

• Works with Python 3.

• Production ready

3

https://pypi.org/project/pika/

PyRMQ

4 Chapter 1. Features

CHAPTER

TWO

QUICKSTART

PyRMQ is available at PyPI.

$ pip install pyrmq

Just instantiate the feature you want with their respective settings. PyRMQ already works out of the box with Rab-
bitMQ’s default initialization settings.

from pyrmq import Publisher
publisher = Publisher(

exchange_name="exchange_name",
queue_name="queue_name",
routing_key="routing_key",

)
publisher.publish({"pyrmq": "My first message"})

5

https://pypi.org/project/PyRMQ/
https://hub.docker.com/_/rabbitmq)

PyRMQ

6 Chapter 2. Quickstart

CHAPTER

THREE

USER GUIDE

3.1 PyRMQ Installation

There are multiple ways to install PyRMQ as long as multiple versions to choose from.

3.1.1 Stable Version

PyRMQ is available at PyPI.

$ pip install pyrmq

3.1.2 Development Version

Since PyRMQ is continuously used in a growing number of internal microservices all working with RabbitMQ, you
can see or participate in its active development in its GitHub repository.

There are two ways to work or collaborate with its development version.

Git Checkout

Clone the code from GitHub and run it in a virtualenv.

$ git clone git@github.com:altusgerona/pyrmq.git
$ virtualenv venv --distribute
$. venv/bin/activate
$ python setup.py install

This will setup PyRMQ and its dependencies on your local machine. Just fetch/pull code from the master branch to
keep your copy up to date.

7

https://pypi.org/project/Cerberus
https://github.com/altusgerona/pyrmq

PyRMQ

PyPI

$ mkdir pyrmq
$ cd pyrmq
$ virtualenv venv --distribute
$. venv/bin/activate
$ pip install git+git://github.com/altusgerona/pyrmq.git

3.2 How to use PyRMQ

3.2.1 Publishing

Instantiate the Publisher class and plug in your application specific settings. PyRMQ already works out of the box
with RabbitMQ’s default initialization settings.

from pyrmq import Publisher
publisher = Publisher(

exchange_name="exchange_name",
queue_name="queue_name",
routing_key="routing_key",

)
publisher.publish({"pyrmq": "My first message"})

This publishes a message that uses a BlockingConnection on its own thread with default settings and an exponential
backoff logic for its retries.

Retries

PyRMQ’s Publisher retries happen on two levels: connecting and publishing.

Connecting

PyRMQ instantiates a BlockingConnection when connecting. If this fails, it will retry for 2 more times by default
with a delay of 5 seconds, a backoff base of 2 seconds, and a backoff constant of 5 seconds. All these settings are
configurable via the Publisher class.

Publishing

PyRMQ calls pika’s basic_publish when publishing. If this fails, it will retry for 2 more times by default with a delay
of 5 seconds, a backoff base of 2 seconds, and a backoff constant of 5 seconds. All these settings are configurable via
the Publisher class.

8 Chapter 3. User Guide

https://hub.docker.com/_/rabbitmq
https://pika.readthedocs.io/en/stable/modules/adapters/blocking.html
https://en.wikipedia.org/wiki/Exponential_backoff
https://en.wikipedia.org/wiki/Exponential_backoff
https://pika.readthedocs.io/en/stable/modules/adapters/blocking.html
https://pika.readthedocs.io/en/stable/modules/channel.html#pika.channel.Channel.basic_publish

PyRMQ

Max retries reached

When PyRMQ has tried one too many times, it will call your specified callback.

3.2.2 Consuming

Instantiate the Consumer class and plug in your application specific settings. PyRMQ already works out of the box
with RabbitMQ’s default initialization settings.

from pyrmq import Consumer

def callback(data):
print(f"Received {data}!")

consumer = Consumer(
exchange_name="exchange_name",
queue_name="queue_name",
routing_key="routing_key",

)

consumer.start()

Once the Consumer class is instantiated, just run start() to start its own thread that targets pika’s start_consuming
method on its own thread with default settings and an exponential backoff logic for its retries. Consumption calls
basic_ack with delivery_tag set to what the message’s method’s was.

Retries

PyRMQ’s Consumer retries happen on two levels: connecting and consuming.

Connecting

PyRMQ instantiates a BlockingConnection when connecting. If this fails, it will retry for 2 more times by default
with a delay of 5 seconds, a backoff base of 2 seconds, and a backoff constant of 5 seconds. All these settings are
configurable via the Consumer class.

Consuming

PyRMQ calls pika’s start_consuming when Consumer is instantiated. If this fails, it will retry for 2 more times by
default with a delay of 5 seconds, a backoff base of 2 seconds, and a backoff constant of 5 seconds. All these settings
are configurable via the Consumer class.

3.2. How to use PyRMQ 9

https://hub.docker.com/_/rabbitmq
https://pika.readthedocs.io/en/stable/modules/adapters/blocking.html#pika.adapters.blocking_connection.BlockingChannel.start_consuming
https://en.wikipedia.org/wiki/Exponential_backoff
https://pika.readthedocs.io/en/stable/modules/channel.html#pika.channel.Channel.basic_ack
https://pika.readthedocs.io/en/stable/modules/adapters/blocking.html
https://pika.readthedocs.io/en/stable/modules/adapters/blocking.html#pika.adapters.blocking_connection.BlockingChannel.start_consuming

PyRMQ

Max retries reached

When PyRMQ has tried one too many times, it will call your specified callback.

3.3 API Documentation

3.3.1 Publisher Class

3.3.2 Consumer Class

3.4 Testing PyRMQ

We’re not gonna lie. Testing RabbitMQ, mocks or not, is infuriating. Much harder than a traditional integration testing
with a database. That said, we hope that you could help us expand on what we have started should you feel our current
tests aren’t enough.

3.4.1 RabbitMQ

Since PyRMQ strives to be as complete with testing as it can be, it has several integration tests that need a running
RabbitMQ to pass. Currently, PyRMQ is tested against rabbitmq:3.8.

Run Docker image (recommended)

$ docker run -d --hostname my-rabbit --name rabbitmq -p 5672:5672 rabbitmq:alpine

This allows you to connect to RabbitMQ via localhost through port 5672. Default credentials are guest/guest.

Install and run RabbitMQ locally

$ # Depending on your OS
$ # Ubuntu
$ sudo apt install rabbitmq
$ # Arch Linux
$ sudo pacman -S rabbitmq

3.4.2 Using tox

Install pip install tox and run:

$ tox
$ tox -e py38 # If this is what you have installed or don't want to bother testing
→˓for other versions

10 Chapter 3. User Guide

	Features
	Quickstart
	User Guide
	PyRMQ Installation
	How to use PyRMQ
	API Documentation
	Testing PyRMQ

